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Heuristics



Less-Can-Be-More: Managers’ One-Good-

Reason Decisions

Wübben and Wangenheim (2008)



Why are Heuristics so important in AI and 

Computer Science?

• They can solve NP-complete (computationally 

intractable) problems when classic methods 

(probability theory) fail to find an exact solution



What strategy would you use? 

Optimizing 

portfolio models 

such as the Nobel 

Prize–winning 

“Markowitz’s mean-

variance portfolio”  

(DeMiguel et al. 

2009)

1/N Rule: Allocate resources equally 

to each of N alternatives. (Benartzi & 

Thaler 2001) 



Early decision theories

• Many economic theories portrayed decision agents as 
idealised, perfectly rational humans

– rational choice theory (Scott, 2000; Friedman, 1953)

– expected utility theory (von Neumann & Morgenstern, 1944; 1947; 1953)

• Statistical optimal models are regarded as “rational” because 
they are grounded in the laws of logic and the axioms of 
probability theory.

• Homo economicus always acts rationally with complete 
knowledge, out of self-interest and with the desire for wealth



Early decision theories

• Many economic theories portrayed decision agents as 
idealised, perfectly rational humans

– rational choice theory (Scott, 2000; Friedman, 1953)

– expected utility theory (von Neumann & Morgenstern, 1944; 1947; 1953)

• Statistical optimal models are regarded as “rational” because 
they are grounded in the laws of logic and the axioms of 
probability theory.

• Homo economicus always acts rationally with complete 
knowledge, out of self-interest and with the desire for wealth

 Highly unrealistic image of humans: People usually do not have 

complete, perfect knowledge at hand, nor unlimited time, nor unlimited 

memory capacities. 



Psychological models of decision making

• Herbert Simon (1990): people are bounded in their rationality. Therefore 

people usually satisfice rather than maximize. 

• Kahneman and Tversky (1974): people use heuristics and often deviate from 

rational norms, i.e., they display cognitive biases: 

conjunction fallacy (representativeness heuristic)

availability bias (availability heuristic)

anchoring bias (anchoring heuristic)

, …



Heuristics – General Definition

A heuristic is a strategy that ignores part of the information, 

with the goal of making decisions more quickly, frugally, 

and/or accurately than more complex methods.

(Gigerenzer & Gaissmaier, 2012)



Overview

1. Fast and frugal Heuristics: 

How do they work?



Take-The-Best Heuristic

Mechanism:
1. Search through cues in order 

of their (absolute) validity.

2. Stop on finding the first cue 

that discriminates between 

the teams.

3. The team with the higher 

value on that discriminating 

cue is predicted to win, i.e., 

have a higher criterion value. 

What team will win the game?



Tallying Heuristic

Mechanism:
1. Count the positive and 

negative evidence in favour 

of either team 

2. Decision rule: Decide for the 

alternative that is favoured by 

more cues

3. Ignore all cue validity 

magnitudes, and only rely on 

cue directionalities (+ and -).



Linear Regression

Mechanism:

- Considers all the cues 

- Selectively weights each 

cue

- Takes into account co-

variance among cues

𝑌𝑖 = 𝛽1 ∗ 𝐿𝑒𝑎𝑔𝑢𝑒𝑃𝑜𝑠 + 𝛽2 ∗ 𝐿𝑎𝑠𝑡𝑔𝑎𝑚𝑒𝑅𝑒𝑠𝑢𝑙𝑡 + 𝛽3 ∗ 𝐻𝑜𝑚𝑒𝐴𝑤𝑎𝑦 + 𝛽4 ∗ 𝑁𝑜𝐺𝑜𝑎𝑙𝑠

1ˆ ( )T TX X X Y 



Heuristics use cue validities (v) as weights.

R
v

R W




R = number of correct predictions,

W = number of incorrect predictions, and consequently 0 1v 



What are main differences between heurisics 

and from full-information models (e.g., full 

regression)? 



Heuristics use cue validities (v) as weights:

R
v

R W




R = number of correct predictions,

W = number of incorrect predictions, and consequently

0 1v 

• Considers all the cues 

• Selectively weights each cue

• Takes into account co-variance among cues

𝑌𝑖 = 𝛽1 ∗ 𝐿𝑒𝑎𝑔𝑢𝑒𝑃𝑜𝑠 + 𝛽2 ∗ 𝐿𝑎𝑠𝑡𝑔𝑎𝑚𝑒𝑅𝑒𝑠𝑢𝑙𝑡 + 𝛽3 ∗ 𝐻𝑜𝑚𝑒𝐴𝑤𝑎𝑦 + 𝛽4 ∗ 𝑁𝑜𝐺𝑜𝑎𝑙𝑠

Linear regression weights:

1ˆ ( )T TX X X Y 

• Does not take account co-variance among cues



Full-information models       Heuristics

OLS regression weights: Individual regression coefficients/ Cue 

validities

𝛽1 𝛽 2 𝛽 3 𝛽 4 

-0.29 1.16 -0.11 0.08

𝛽 1 𝛽 2 𝛽 3 𝛽 4 

0.00 1.00 0.25 0.71

Important: Cue validities are a linear transformation of single predictor 

regression coefficients (right figure).  They ignore any dependencies among 

cues.



Prominent notions of heuristics

Daniel Kahneman 

& Amos Tversky 

(1974, 1981, 2003)

Gerd 

Gigerenzer & 

the ABC 

research 

group (1999)



Heuristics are smart, adaptive

strategies to act in an uncertain world.

Heuristics and biases

Heuristics: suboptimal, a source for 

biases and irrational behaviour, 

assuming an accuracy-effort-tradeoff. 

Rationality: still using laws of logic, 

axioms of probability theory, 

optimization

Fast and frugal heuristics

Heuristics: not biased, but adaptive, 

exploit structure in environment, lead 

to good accuracy levels, no accuracy-

effort-tradeoff. 

Rationality: No more logic & 

probability theory. Instead ->

Ecological Rationality

Kahneman & 

Tversky (1974)

Gigerenzer 

& the abc 

research 

group 

(1999)

Heuristics are biased approximations 

to rational inference.



Probabilistic Approach

 Bayesian models have taken over

cognitive science (reasoning,

judgment, learning and decision

making)

 Very useful and widely applicable

 Often only on computational level

though (Marr, 1982)

 Need to be integrated with

mechanistic approaches?

Ecological Approach

 Heuristics are not compatible with 

probabilistic inference. 

 Should not even compare human 

behaviour against the norms of 

probability theory

 Heuristics are psychologically 

plausible process models 

accounting for cognitive constraints. 
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Probabilistic Approach

 Bayesian models have taken over

cognitive science (reasoning,

judgment, learning and decision

making)

 Very useful and widely applicable

 Often only on computational level

though (Marr, 1982)

 Need to be integrated with

mechanistic approaches?

Ecological Approach

 Heuristics are not compatible with 

probabilistic inference. 

 Should not even compare human 

behaviour against the norms of 

probability theory

 Heuristics are psychologically 

plausible process models 

accounting for cognitive constraints. 

 Heuristics and biases and fast and frugal heuristics program differ in many 

ways

 But both agree that        Heuristics ≠ Bayesian

 Most studies focused on demonstrating over and over again that people 

behave according to heuristics, or, in a nearly optimal Bayesian fashion. 

collecting existence proofs is not very useful

Parpart et al., (submitted)

I. We show that heuristics are compatible with Bayesian 

Inference. 

II. We contribute the novel idea that heuristics can be 

thought of as embodying a strong Bayesian prior.

III. We thereby attempt to reconcile irrational and adaptive 

approaches of heuristics.



Heuristics are often contrasted with full-

information models

• Full-information models: make full and proper use of 

available information. Such as:

• ”Rational” Multiple Regression: 
– Uses all cues and optimally weighs and integrates them

• Probabilistic Models of Cognition

• Bayesian inference models

• Optimal inference as benchmark to compare human 

behaviour against (Oaksfoard & Chater, 2007)



Less-is-more: Heuristics can outperform full-

information models

• Czerlinski et al. (1999) showed that heuristics can sometimes 

outperform “rational” linear multiple regression

• Heuristics can outperform three-layer feed-forward connectionist 

neural network trained using the back propagation algorithm, two 

exemplar-based models, and a decision tree- induction algorithm 

(Chater et al., 2003; Brighton, 2006). 

Such results can appear paradoxical because heuristics 

neglect relevant information, while the full-information 

methods make full use of the data. 



Heuristics  vs. “rational” accounts

Original data sets (Czerlinski et al., 1999): City size task, professors salaries, High school dropout rates, Homelessness

House price, Mortality, Land rent, Car accidents, Fuel consumption, Obesity at age 18, Body Fat, Fish fertility, Mammals’ 

sleep, Cow manure, Biodiversity, Rainfall from cloud, Oxidant in L.A., Ozone in San Francisco
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measures the 

out-of-sample 

performance.



How can Less-is-more findings be explained?

1. Bias-variance (Brighton & Gigerenzer, 2009)

2. Later: Our Bayesian integration model will provide a 

new explanation. 

In this view, an explanation for the success of heuristics is that their 

relative simplicity and inflexibility amounts to a strong inductive 

bias, akin to a Bayesian prior, that makes the model best-suited to 

certain learning and decision problems.



(Adopted from Pitt & Myung, 2002)

bias-variance tradeoff:

Prediction error
= (bias)2+variance + noise

1. Bias-variance



• A model’s bias and the input data are responsible for what a model 

learns from the training data. 

• In addition to differing in bias, models can also differ in how sensitive 

they are to the variability in the training sample, i.e., this is reflected in 

the variance of the model’s parameters after training. 

• Both the inductive bias and the parameters’ variance determine how 

well a model classifies novel test cases – this is crucial, as the utility of 

any model is measured by its generalization performance (Kohavi, 

1995)

Prediction error = (bias)2+variance + noise

Bias-variance



• Higher flexibility (higher 

variance) can in fact hurt 

a models’ performance 

as it means the model is 

overly affected by the 

idiosyncrasies of the 

training sample. 

Overfitting

This phenomenon, commonly referred to as overfitting, 

is characterized by high performance on experienced 

cases from the training sample but poor performance 

on novel test items. 

Overfitted models have high goodness-of-fit but low 

generalization performance (Pitt & Myung, 2002)

Tour de France



• Bias and variance trade off with one another

 implies that simpler (i.e., more biased) models, such as heuristics

can outperform more flexible (i.e., less biased) models

Overfitting

Prediction error = (bias)2+variance + noise

“less well trained cyclist 

can paradoxically do 

better”



Why can simple heuristics sometimes outperform more complex 

algorithms?

• As the size of the training sample increases, more complex models (OLS) 

should fare better.  we find that the advantage for the heuristic disappears 

when training sample size is increased (Figure B) 


SEM. 

B) House data set by Czerlinski et al., (1999)



 We need to move beyond demonstrations like these, and get a 

deeper, formal understanding that is general and powerful.

 Why can heuristics sometimes perform better than full-

information models? 

 Create a formal link between OLS and heuristics.

 Show that intermediate models may perform best.

Novel Bayesian Approach: 3 goals



Model I: Bayesian Model for Tallying 

Heuristics as Bayesian Inference: Model I



Tallying as a limiting case of regularized 

regression

• The 1st Bayesian model we developed is conceptually 

related to ridge regression, a successful regularized 

regression approach in machine learning.

• Ridge regression extends ordinary linear regression by 

incorporating a penalty term that adjusts model complexity 

to improve weight estimates and avoid overfitting



Regularized regression: Ridge regression (L2)

Penalty termOrdinary Least squares (OLS)

 Linear regression coefficients usually suffer from high variance as 

the model gets more complex (overfitting)

 Ridge regression‘s penalty term reduces model complexity as the 

penalty parameter 𝜃 increases, as more bias is introduced in 

the model, reducing variance

 Less overfitting.



Regularized regression: Ridge regression (L2)

Penalty termOrdinary Least squares (OLS)

Special case 1: 𝐖𝐡𝐞𝐧 𝜃 = 0,

• ridge regression is concerned only with goodness of fit (i.e., 

minimizing squared error on the training set).

• ridge regression is equivalent to OLS  (  𝑤𝑟𝑖𝑑𝑔𝑒 →  𝑤𝑂𝐿𝑆)



Regularized regression: Ridge regression (L2)

Penalty termOrdinary Least squares (OLS)

Special case 2: 𝐖𝐡𝐞𝐧 𝜃 → ∞,

• the pressure to shrink the weights increases, reducing them to zero 

as 𝜃 → ∞.  𝑤𝑟𝑖𝑑𝑔𝑒 → 0

• Larger values of 𝜃 lead to stronger inductive bias, which can reduce 

overfitting by reducing sensitivity to noise in the training sample



Regularized regression (L2): Ridge regression

∞ penalty 𝜽

𝐜𝐨
𝐞
𝐟𝐟
𝐢𝐜
𝐢𝐞
𝐧
𝐭𝐬



Regularized regression: Ridge regression (L2)

Penalty termOrdinary Least squares (OLS)

The optimal setting of 𝜃 will always depend on the environment

from which the weights, cues, and outcomes were sampled.



Penalty term is like a Gaussian Bayesian prior

𝑓 𝑤 =
1

2𝜋
𝑒
−
(𝜇−𝑤)2

2𝜎2

Penalty term

Gaussian 

(Normal) prior on 

the weights

Other priors

where 𝜃 =
𝜎2

𝜂2



Bayesian Interpretation

• In the Bayesian interpretation, we don’t call it “penalty 

parameter”, but “strength of the prior”.

• Strength of the prior is reflected by 
1

𝜂2
growing stronger 

as 𝜂2 → 0.

Gaussian prior on the 

weights with 𝜃 =
𝜎2

𝜂2



Bayesian Framework for Tallying

• This Gaussian prior distribution is combined with current 

observations (i.e., the training sample) to form a posterior 

distribution (also Gaussian) over the weights.



Tallying as a limiting case of regularized 

regression

• Our Bayesian derivation of the tallying heuristic extends ridge 

regression by assuming the directionalities of the cues (i.e., the 

signs of the true weights) are known in advance. 

• This is concordant with how the tallying heuristic was originally 

proposed in the literature (Dawes, 1979)

+

+

+

+



Tallying as a limiting case of regularized 

regression

• Thus we define the prior for each weight as half-Gaussian, 

truncated at zero, and we refer to this Bayesian model as 

the half-ridge model. 

• Prior is defined by

 Prior weights are all positive.

𝒘 ≥ 𝟎



Tallying as a limiting case of regularized 

regression

• Posterior is then also truncated at zero. 

• Important question is what happens to this posterior as the 

prior becomes arbitrarily strong, i.e., 
1

𝜂2
→ ∞. 

• However, the ratios of the weights—that is, the relative 

inferred strengths of the cues— all converge to unity.

Just as in ridge 

regression, 

strengthening the 

prior in the half-ridge 

model shrinks the 

weights toward zero. 

𝟏

𝜼𝟐
→ ∞. 



Tallying as a limiting case of regularized 

regression

• Posterior is then also truncated at zero. 

• Important question is what happens to this posterior as the 

prior becomes arbitrarily strong, i.e., 
1

𝜂2
→ ∞ or 𝜂 → 0. 

However, the ratios of 

the weights—that is, 

the relative inferred 

strengths of the 

cues—all converge to 

unity.Weights all have same expectation 

in the limit. 



Tallying as a limiting case of regularized 

regression

• That means, the optimal decision-making strategy under 

the Bayesian half-ridge model converges to a simple 

summation of the predictors—that is, a tallying heuristic.

Weights all have same expectation 

in the limit = equal –weight



What have we just done?

• Based only on assumptions about the distribution of 

weights in the environment, we established a Bayesian 

model that converges to the tallying heuristic with a very 

strong prior (when 
1

𝜂2
→ ∞ ).

 Tallying heuristic represents an extreme case of a 

Bayesian inference model.  



What have we just done?

• What happens at the other end of the Bayesian half-ridge 

model, i.e., when prior strength is zero ( 
1

𝜂2
= 0)?

• The model converges to a full regression model.

Regression 

(OLS)

Heuristic 

(Tallying)

1

𝜂2
= 0

1

𝜂2
→ ∞

Continuum of strategies

What happens in 

between ???



Hypotheses

• For many environments, the best-performing model should 

lie somewhere between these two extremes.

Regression 

(OLS)

Heuristic 

(Tallying)
Continuum of strategies

What happens in 

between ???



Results: Performance of the Bayesian half-ridge 

model compared to heuristics and linear 

regression

We test this on the famous twenty ABC datasets 

(Gigerenzer et al., 1999)



Performance peak is 

always in the middle.



Interim Summary: Bayesian Model for 

Tallying

1. Intermediate models performed best in all cases.

2. This suggests that ignoring information was never the 

best solution  Less was not more.

3. Contrary to the less-is-more claim, the best performing 

Bayesian model used all the information in the 

training data, but down-weights it appropriately. 
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What about the Take-The-Best heuristic?

• 2nd Bayesian model that provides a unification of TTB, 
tallying, and linear regression.

• Unlike linear regression, both TTB and tallying rely on 
isolated cue-outcome relationships (i.e., cue validity) that
disregard covariance information among cues.

• We use this insight to construct our second Bayesian
model. 



The Role of Covariance 

• Heuristics do not assess covariance. 

• Complex models: OLS estimates covariance from the data in the 

learning phase, and this can hurt at generalization (overfitting).



Bayesian Framework

• Prior = reflecting the amount of covariance in the environment

• Likelihood = a latent state variable model that enables us to

smoothly move between linear regression and the heuristics

(tallying and TTB heuristic).



Regularization with covariance prior

𝑓 𝑤 =
1

2𝜋
𝑒
−
(𝜇−𝑤)2

2𝜎2

Penalty term

Ridge penalty 

= Gaussian

prior on the 

weights

Prior 

reflecting 

covariance 

information 

in 

environment!



Covariance Orthogonalizing Regularization (COR)

Multivariate (= multiple DV‘s) Regression 



Our latent state variable model

X1 X2 X3

YY Y 

Multivariate (= multiple DV‘s) Regression 

Y =  w11*X1 + w21*X2 + w31*X3
Y = w12*X1 + w22*X2 + w32*X3
Y = w13*X1 + w23*X2 + w33*X3

-> like doing linear regression 3 times!



Our latent state variable model

X1 X2 X3

YY Y 

Y =  w11*X1 + w21*X2 + w31*X3
Y = w12*X1 + w22*X2 + w32*X3
Y = w13*X1 + w23*X2 + w33*X3

= Cross-

connections 

- - > contain the

covariance.
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Our latent state variable model

X1 X2 X3

YY Y 

Y =  w11*X1 + w21*X2 + w31*X3
Y = w12*X1 + w22*X2 + w32*X3
Y = w13*X1 + w23*X2 + w33*X3

= Direct

connections

 no covariance
estimated!



Our Bayesian model

X1 X2 X3

YY Y 

Y

X1 X2 X3
X1 X2 X3

YY Y

Linear Regression 

(high covariance)

Multivariate Linear Regression 

Cue validities

(no covariance)

𝜽 → ∞𝟎 ← 𝜽

𝜽



Our Bayesian model

Single - predictor

regressions

Multivariate Regression 

Prior

• In analogy to ridge regression: 

Prior = − θ ∗  𝑖=1
𝑚  𝑗=1

𝑚 𝑤𝑖𝑗
2
− 𝑡𝑟 𝑊2

Log Likelihood: Multivariate Normal

𝐥𝐧𝑷𝑿,𝑾 𝒀𝒊 ∝ −
1

2
 

𝑖=1

𝑛

𝑌𝑖 − 𝑋𝑊 𝑇C−1 𝑌𝑖 − 𝑋𝑊



θ = 100

penalty parameter θ

θ = 10 θ = 50θ = 0
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θ = 100

penalty parameter θ

θ = 10 θ = 50θ = 0



Our Bayesian model

X1 X2 X3

YY Y 

Y

X1 X2 X3
X1 X2 X3

YY Y

Linear Regression 

(covariance)

Multivariate Linear Regression 

Single - predictor

regression

(no covariance)

θ → ∞θ → 0



TTB decision rule

• Single predictor weights = cue

validities.

• Find the max(absolute(Y)), and take the 

sign. 

Y=

-.22

Y=

.71

Y=

-.58

Cue validities 

(no covariance)

.71 -.22 .58

X1=

1

X2

=1
X3

= -1



Tallying decision rule

• Count the signs of the outputs Y.

= sign(sum(sign(Y))

• Tallying would count: +1-1-1 = -1.
Cue validities (no 

covariance)

Y=

-.22

Y=

.71

Y=

-.58

.71 -.22 .58

X1=

1

X2

=1
X3

= -1



What is linear regression?

• Regular Linear Regression is either heuristic decision rule (TTB or

Tallying decision rule) when the penalty term is zero.

X1 X2 X3

YY Y

Linear Regression 
Single - predictor

regression

= 𝒘𝒉𝒆𝒏 𝜽 → 𝟎



Continuum between heuristics and LR

X1 X2 X3

YY Y 

Y

X1 X2 X3
X1 X2 X3

YY Y

Linear Regression 

(high covariance)

Multivariate Linear Regression 

Cue validities

(no covariance)

𝜽 → ∞𝟎 ← 𝜽

𝜽

High 

covariance
No

covariance





Agreement between Bayesian model and 

Take-The-Best Heuristic



How does the Bayesian COR model perform 

compared to heuristics and linear 

regression?

We test this on the famous twenty ABC datasets 

(Gigerenzer et al., 1999)



Performance peak is 

always in the middle.



What happens in between (for moderate 

penalty)?

• Of course, everything in between will occur.

• The optimum is often in the middle, i.e. not zero 

covariance or high covariance estimation, but a little bit.

High 

covariance

No

covariance

Optimal?



Optimal strategy depends on the environment

• Peak in the middle suggests that true environmental structure and 

potentially psychological processing often lies somewhere between the 

assumptions of heuristic and standard regression approaches.

Full integration/

regression

Heuristic (e.g. 

Tallying)

penalty parameter

Optimal



CONCLUSIONS

Heuristics AND traditional linear regression are a special case of a 

Bayesian inference model. They can be seen as two extreme positions on 

a continuum of decision strategies:

Linear 

Regression

Heuristics 

(e.g. Take-

the-Best)



CONCLUSIONS

1. Heuristics represent extreme cases on a Bayesian inference model. 

 Heuristics = Bayesian Inference.

2. We showed that less is never more.  Heuristics are outperformed 

by a prior of finite strength that learns from the training data but 

nonetheless down-weights that information.

• The strongest form of less-is-more, i.e., that one can do better with 

heuristics by throwing out information, is false. 

  


), but it combines that information with the appropriate prior.



reconciled?



Reconciled?

Daniel Kahneman & 

Amos Tversky (1974, 

1981, 2003)

Gerd Gigerenzer, 

Peter Todd & abc

research group

(1999)

…maybe Kahneman is 

pleased to see that 

heuristics end up as a 

special case of a 

probabilistic inference 

model.

…maybe Gigerenzer and 

colleagues are pleased to find 

that provably the best strategy 

in some environments is a 

heuristic.



IMPLICATIONS

• A central message of this work is that ignoring information is rarely 

optimal. 

• Heuristics may work well in practice because they correspond to an 

environmental prior of zero covariance.

• One question for future research is whether heuristics give an accurate 

characterization of psychological processing, or whether actual 

psychological processing is more akin to these more complex 

intermediate models.

This provides an explanation for why and when heuristics work. 

Full integration/

regression

Heuristic (e.g. 

Tallying)

Psychological 

model?



DISCUSSION

• What could this mean on a psychological level?

( Note that the framework presented here is merely on 

a formal, computational theory.)

• If you were the scientist, what would you do next?

• What are the big implications of this research?



THANK YOU!



DISCUSSION

What could this mean on a psychological level?

1. On the one hand, it could be that implementing the intermediate 

models is computationally intractable, and thus the brain uses 

heuristics because they efficiently approximate these more optimal 

models.  Heuristics- and- biases approach

2. On the other hand, it could be that the brain has tractable means for 

implementing the intermediate models (i.e., for using all available 

information but down-weighting it appropriately). 

 This case would be congruent with the view from ecological rationality where the 

brain’s inferential mechanisms are adapted to the statistical structure of the 

environment.



Marr’s Levels of Analysis (1982) 

• Marr ´s (1982) 3 levels of analysis: 

computational level 

process/algorithmic level

neuronal/implementational level

• Modeling takes place only at computational level 

 will be integrated with process level research 

later



Implications

 The current model can help with a prescriptive analysis: 

When should people rely on a given heuristic rather than a 

complex strategy?

 Now we can answer the question of when it is helpful and harmful 

to use simple shortcuts, because we have a Bayesian model that 

tells us what strategy is optimal in what environment (it answers 

the question of ecological rationality).



When is it helpful and harmful to rely on 

heuristics?

• Heuristics can reduce 

the complexity of 

decisions by a lot, 

which is required when 

decisions have to be 

made quickly.



When is it helpful and harmful to rely on 

heuristics?

• Heuristics at war. 

(see Keller & 

Katsikopoulos, 2016



When is it helpful and harmful to rely on 

heuristics?

• Heuristic Decision 

Trees for high stress 

situations. (Keller & 

Katsikopoulos, 2016)



Examples: Where are these heuristics used?

• Take-The-Best 
 Predicting consumer choices: Hauser et al. (2009), decisions between computers (Kohli & 

Jedidi, 2007); smartphones (Yee et al., 2007)

 Literature Search (Lee et al., 2002): TTB performed as well as a Bayesian search algorithm

• Tallying
 Detecting Strokes: Bedside eye exam could outperform MRI scans(Kattah et al. 2009)

 Avoiding avalanche accidents: check how many out of seven cues have been observed en route 

or on the slope (McCammon & Haegeli 2007). When > 3 cues are present, the situation is 

considered dangerous. 92% of historical accidents could have been prevented with this strategy.

• Recognition
 Predicting elections (Gaissmaier & Marewski, 2010)

 Investment (recognition-based portfolios) (Ortman et al., 2008)

 Predicting Wimbledon (Serwe & Frings, 2006)
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